344 research outputs found

    Scaling of the localization length in linear electronic and vibrational systems with long-range correlated disorder

    Full text link
    The localization lengths of long-range correlated disordered chains are studied for electronic wavefunctions in the Anderson model and for vibrational states. A scaling theory close to the band edge is developed in the Anderson model and supported by numerical simulations. This scaling theory is mapped onto the vibrational case at small frequencies. It is shown that for small frequencies, unexpectateley the localization length is smaller for correlated than for uncorrelated chains.Comment: to be published in PRB, 4 pages, 2 Figure

    Characterization of Sleep Stages by Correlations of Heartbeat Increments

    Full text link
    We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and REM sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the signs series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.Comment: 7 pages, 4 figures, revte

    Long-term power-law fluctuation in Internet traffic

    Get PDF
    Power-law fluctuation in observed Internet packet flow are discussed. The data is obtained by a multi router traffic grapher (MRTG) system for 9 months. The internet packet flow is analyzed using the detrended fluctuation analysis. By extracting the average daily trend, the data shows clear power-law fluctuations. The exponents of the fluctuation for the incoming and outgoing flow are almost unity. Internet traffic can be understood as a daily periodic flow with power-law fluctuations.Comment: 10 pages, 8 figure

    Level statistics and eigenfunctions of pseudointegrable systems: dependence on energy and genus number

    Full text link
    We study the level statistics (second half moment I0I_0 and rigidity Δ3\Delta_3) and the eigenfunctions of pseudointegrable systems with rough boundaries of different genus numbers gg. We find that the levels form energy intervals with a characteristic behavior of the level statistics and the eigenfunctions in each interval. At low enough energies, the boundary roughness is not resolved and accordingly, the eigenfunctions are quite regular functions and the level statistics shows Poisson-like behavior. At higher energies, the level statistics of most systems moves from Poisson-like towards Wigner-like behavior with increasing gg. Investigating the wavefunctions, we find many chaotic functions that can be described as a random superposition of regular wavefunctions. The amplitude distribution P(ψ)P(\psi) of these chaotic functions was found to be Gaussian with the typical value of the localization volume Vloc0.33V_{\rm{loc}}\approx 0.33. For systems with periodic boundaries we find several additional energy regimes, where I0I_0 is relatively close to the Poisson-limit. In these regimes, the eigenfunctions are either regular or localized functions, where P(ψ)P(\psi) is close to the distribution of a sine or cosine function in the first case and strongly peaked in the second case. Also an interesting intermediate case between chaotic and localized eigenfunctions appears

    Components of multifractality in high-frequency stock returns

    Full text link
    We analyzed multifractal properties of 5-minute stock returns from a period of over two years for 100 highly capitalized American companies. The two sources: fat-tailed probability distributions and nonlinear temporal correlations, vitally contribute to the observed multifractal dynamics of the returns. For majority of the companies the temporal correlations constitute a much more significant related factor, however.Comment: to appear in Physica

    Multifractal Detrended Cross-Correlation Analysis of Sunspot Numbers and River Flow Fluctuations

    Full text link
    We use the Detrended Cross-Correlation Analysis (DCCA) to investigate the influence of sun activity represented by sunspot numbers on one of the climate indicators, specifically rivers, represented by river flow fluctuation for Daugava, Holston, Nolichucky and French Broad rivers. The Multifractal Detrended Cross-Correlation Analysis (MF-DXA) shows that there exist some crossovers in the cross-correlation fluctuation function versus time scale of the river flow and sunspot series. One of these crossovers corresponds to the well-known cycle of solar activity demonstrating a universal property of the mentioned rivers. The scaling exponent given by DCCA for original series at intermediate time scale, (1224)s130(12-24)\leq s\leq 130 months, is λ=1.17±0.04\lambda = 1.17\pm0.04 which is almost similar for all underlying rivers at 1σ1\sigmaconfidence interval showing the second universal behavior of river runoffs. To remove the sinusoidal trends embedded in data sets, we apply the Singular Value Decomposition (SVD) method. Our results show that there exists a long-range cross-correlation between the sunspot numbers and the underlying streamflow records. The magnitude of the scaling exponent and the corresponding cross-correlation exponent are λ(0.76,0.85)\lambda\in (0.76, 0.85) and γ×(0.30,0.48)\gamma_{\times}\in(0.30, 0.48), respectively. Different values for scaling and cross-correlation exponents may be related to local and external factors such as topography, drainage network morphology, human activity and so on. Multifractal cross-correlation analysis demonstrates that all underlying fluctuations have almost weak multifractal nature which is also a universal property for data series. In addition the empirical relation between scaling exponent derived by DCCA and Detrended Fluctuation Analysis (DFA), λ(hsun+hriver)/2 \lambda\approx(h_{\rm sun} + h_{\rm river})/2 is confirmed.Comment: 9 pages, 8 figures and 1 table. V2: Added comments, references, figures and major corrections. Accepted for publication in Physica A: Statistical Mechanics and its Application

    Nonextensive statistical features of the Polish stock market fluctuations

    Full text link
    The statistics of return distributions on various time scales constitutes one of the most informative characteristics of the financial dynamics. Here we present a systematic study of such characteristics for the Polish stock market index WIG20 over the period 04.01.1999 - 31.10.2005 for the time lags ranging from one minute up to one hour. This market is commonly classified as emerging. Still on the shortest time scales studied we find that the tails of the return distributions are consistent with the inverse cubic power-law, as identified previously for majority of the mature markets. Within the time scales studied a quick and considerable departure from this law towards a Gaussian can however be traced. Interestingly, all the forms of the distributions observed can be comprised by the single qq-Gaussians which provide a satisfactory and at the same time compact representation of the distribution of return fluctuations over all magnitudes of their variation. The corresponding nonextensivity parameter qq is found to systematically decrease when increasing the time scales.Comment: 14 pages. Physica A in prin

    A nonextensive approach to the dynamics of financial observables

    Full text link
    We present results about financial market observables, specifically returns and traded volumes. They are obtained within the current nonextensive statistical mechanical framework based on the entropy Sq=k1i=1Wpiq1q(q)S_{q}=k\frac{1-\sum\limits_{i=1}^{W} p_{i} ^{q}}{1-q} (q\in \Re) (S1SBG=ki=1WpilnpiS_{1} \equiv S_{BG}=-k\sum\limits_{i=1}^{W}p_{i} \ln p_{i}). More precisely, we present stochastic dynamical mechanisms which mimic probability density functions empirically observed. These mechanisms provide possible interpretations for the emergence of the entropic indices qq in the time evolution of the corresponding observables. In addition to this, through multi-fractal analysis of return time series, we verify that the dual relation qstat+qsens=2q_{stat}+q_{sens}=2 is numerically satisfied, qstatq_{stat} and qsensq_{sens} being associated to the probability density function and to the sensitivity to initial conditions respectively. This type of simple relation, whose understanding remains ellusive, has been empirically verified in various other systems.Comment: Invited paper to appear in special issue of Eur. Phys. J. B dedicated to econophysics, edited by T. Di Matteo and T. Aste. 7 page

    Volcanic forcing improves Atmosphere-Ocean Coupled General Circulation Model scaling performance

    Full text link
    Recent Atmosphere-Ocean Coupled General Circulation Model (AOGCM) simulations of the twentieth century climate, which account for anthropogenic and natural forcings, make it possible to study the origin of long-term temperature correlations found in the observed records. We study ensemble experiments performed with the NCAR PCM for 10 different historical scenarios, including no forcings, greenhouse gas, sulfate aerosol, ozone, solar, volcanic forcing and various combinations, such as it natural, anthropogenic and all forcings. We compare the scaling exponents characterizing the long-term correlations of the observed and simulated model data for 16 representative land stations and 16 sites in the Atlantic Ocean for these scenarios. We find that inclusion of volcanic forcing in the AOGCM considerably improves the PCM scaling behavior. The scenarios containing volcanic forcing are able to reproduce quite well the observed scaling exponents for the land with exponents around 0.65 independent of the station distance from the ocean. For the Atlantic Ocean, scenarios with the volcanic forcing slightly underestimate the observed persistence exhibiting an average exponent 0.74 instead of 0.85 for reconstructed data.Comment: 4 figure
    corecore